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Note on the Formal Solution of the Tomonaga-Schwinger Equation.
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We shall present here some remarks on the formal solution of the
Tomonaga-Schwinger equation of field theory. However, the physical
interpretation of these formal solutions will be left for future works which
will come into contact with the fundamental difficulties underlying our
present theory.

The fundamental equation of the Tomonaga-Schwinger theory®® is of
the form

| . 0 .
H()—i—5 | =0, 1
{@-ig st o (1)
where the interaction density A(z) is subject to the condition
[H(x), H(2")]=0, when (x,—z,)*>0. (2)

The formal solution of this equation will be given by the following state
functional

¥lo]=S[a, 0] ¥[a], (3)

when we impose an initial condition on the hyper-surface o, and ¥[a,]
denotes the state functional corresponding to this initial condition. The
transformation functional S[e, @] is to bc determined by the following
functional differential equation

; 0S[a, o]

> =H(x) S[o, o] (4)
da (x)
and it should also have the property
Slow, ao]=1 (5)

that is, in form of a functional integral equation, it is given by

S[o, ag]=1+-- j H(') S[7, ag)di'. (6)

Z
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210 S. Tanr.

We shall expand the transformation functional S{s, o,] into a power series
of the coupling constant e for the later convenience. (We muy assume the
interaction density to be of the first order in ¢ without missing the essential
feature of our argument.)

& () . 10)
S g, a,]= ES[o', o] ; with Slo, gy =1. (7)
n=0
()

The functional differential equation for the S{e, ] is read as
(n)

. 0S[a, o] — H(x ""5” g
which has the formal solution
(n)
S[e, aﬂ,__..ffz(x') Sh, alde. (9)
We  also havc the following equations concerning to their Hermitean
conjugate S*[a, ay]
(n)
. 6 S+ : n-~1),
-z———6;%d—°]—=3+[a, al H(z), (8)
) . B(n~1)
$*a, al=i | "S*[e, o] 2 () e, (9
o
with  S*[o, a]=1. o)

1°) We show explicitly that S[e, a,] is an unitary operator :
@ o wm @
S*[e, o] S[o, a,]= 1+(S++S)+(S++S+S+S)
@ Om MmO @

+(S* S*S+S*S+S)+ .. ,
=1. (10)
The proof for the e-part of the above equation is self-evident;

(1)

Srp8s j H(x"Ydx' +(-_) j H(x')dr' =0.

For the e~part we require the following relation
ol
Q00 @

+ 884 S=(y j H(x" a’x”j H(x")dx!

Go

+ j H(x") ,zr'j H (& dx" + (J—)f H(¥) dx' f H(x")dx" =0
z
a0 a0 L] o
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Note on the Formal Solution of the Tomounaga-Sclwinger Eguation. 211

wherein the point 2" lies on the surface ¢, We change the notation in

the first integral and have the following three integrals
5 [ g o c af
[- j de ja’.m’—!— | zz,r'jdx"— ja’x’ja’x” H(AYH (=) ,
Co Go Go Co da Ta
which reduce to

[- -d":”j'd/t,l_*_j(lx'j\dx” H(x’) H‘(x”)

In order to see the essential points easier, we shall take the surfaces which
are parallel to the spatial coordinate axis. Iet ay, o/, ¢/, @ correspond to
the surface x=+¢, 7, i/, ¢ respectively. The sutface integral (3—-dimensional
volume integral) of the interaction density over the surface with the time
value 7 is denoted by

E(z)=jH (#) dv; xy=% on the surface @.

Then we shall have
an 2

[_jdf'jdz'a-jzﬂ'j’a’z" A2 )

Both integral cover just the same region, though the order of the integration
is reversed ; so they cancel each other.

The proof for the 3-rd or higher order is a little more complicated,
but can be performed similarly by considering the order of the integration
in a certain multiple integral.

2°) One can easily verify that there exists the Heisenberg picture
of the energy operator in the generalized sense, that is, it is defined in
terms of the coordinate of the respective point alone but does not depend
on the surface o: the representative state functional is thereby the same
and constant for all world poiats.

For the proof we have only to show that the transformed opcrotor
iS*[a, 5] - 8/00(x) - S[o, 0)]=S*[0, a;] H(x) S[a, a5] is independent on the
form of the space like surface o, or in other words, their functional derivative
with respect to another point a which lies upon the surface o always
vanishes.

3(S*[a, 0,) H)S [0, a,])
da(x")

= 35*[0', ] : g, O, e, o ;
_Wﬁu) Sle, o]+ S*[a, o] H(x)

0S[a, a,)
do(2")
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=25, @ ](H() H@~H @) HE) Slo, a]=0. (1)
We shall employ the following notatien hereafter

S*lo, o] H(2) S[o, o]= Y E(z) ; with E@=H@. (12)
=1
(Rigorously speaking, they ought to be written as Z'?E,,oj(z'); See Art. 5.)
The statement that the transformed operator of energy is a point
function is valid not only for the transformed operator as a whole, but
also for the individual part of the power series of the coupling constant.
3°) The condition for an arbitrary operator O(x) to have the Heisenberg
picture in the sense of the preceding article is

[A(x), 0(+)]=0, when (r,2,/)>0 (13)
The proof is quite similar to that of the preceding article.
4°) The transformation functional Sfe, o] can be expressed in terms
of the 4-dimensional volume integrals of the point function operators of
energy mentioned in Art. 2.: the upper and lower limit of these( ni)ntegrals
are bounded by the qurfaceq ¢ and g, respectively. That is, the S[o, a,]'s

are expressed in terms of jE (#")dx' ’s by solving the following equations

o
inversely.

L jF(x’) dx' = EmS“[a', o) S[o', oo}

m=1

n—=1 Lif) (o
—-nS[o', 0] — 2 m S[o, o) S[a, o)+ E 2 mS fnsl‘)fg)

m=1 All permutation
() + (i) =n—m

(I)(ﬁ) (A)(
+oeinnn +{(— 1)’2 Zm ...... S+ .....+(-—])"‘1{§‘}n (14)
m=t a)+(il)+.. -x-u)sn-m)

Proof: we notice first that

{n) 21 () {n—m=1y
E@x)= 2 S*[e, 0,] H(#) S[a, a] 129
m=0
and that
& (m) {n—m)
Z S+[‘7! %) S[”9 ”o]——-o ) (1.0)

m=0

which relation was used in the third statement of Eq (14), i..
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11.—1

Stla, a]=—S[a, o]+ WS Sto, 0,1'STo, aqdveneee

m=1
WA ()

+(—Ijlzss S+¢.-ovo+("—'1) {S[ﬂ‘, do]}n (15)
((l)«x-(u)-l-...(a).—m)
By integrating the following equation

S [a, 00} H(x) S'[a‘, ao]__ {2 S+ [a', a'o] S [a', o',,]} (16)

=0
we have the relation
4 (n) () 2 (n=-1)y (n+14+2)
A j S, o5) H(x") S[o, og)dw' =Y S*[a, 0} Slo, a].  (17)
L =0
Then, from Egs. (17) and (12") we get the final results.
The results for the first four order in ¢ are tabulated as follows:
[¢))]
8o, a,,]__.. jL(x’) da' ;
ao
c
9

a
@ [} 2 (
Sle, o,]= '2]-'"" {"——': J‘ E@") a’x’} +"§—"‘-z E@"dx;

Q[a, a)]= { j‘E(x’) a’x’}s (—-}) jF(x’)a’x jE( 2dx'

+___ (._) j E(z")da’ jﬁ(x') ' +—- 3 fF(a’) ' ;

o
1)

S[a, ”0]__ { j‘E(x') i’ +__1_(,l_)"§ ([egz(x’) dx’' { j‘ %)(x’) a'x’}z

z

Y [Eor 2 ([ B oo

+ zl?(%)j By Jo%’(x) 2!

() if«:’(x') Y S B!y da? j B!

)
1 2‘( Ndx.

z

RIA SN PN L R o
oy ( i)!E(x)dx iE(x’)dz+ i

8‘-——=a
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214 S. Tanr.

)
5°) Between the Z(x)’s there exists the following recurrence formula

n~1

=) E@=Y [E(z), = j ) a’x] (18)

m=1

which enables for one to get the higher order terms successively initiating

)
from the Z(x)=H(x). This formula is useful in practice, but some points
should be noticed as regards to the boundary of the integration region. In

o

o (m)
the above equation, the integral j-E (#))dx’ should have been written as
jE(x’) dx’ according to their original meaning, however, the contribution

ﬁom the lower surface o, have nothing to do with the character of E (x)
as a point function. So it is convenient for one to proceed in the following
way : we may neglect the contribution from the lower boundary by employ-
ing the Fourier-transform of the integrand and the Gauss’ theorem.* This

a(m)
integral is denoted by SE (#')dz’ in the above equation. This procedure

corresponds physically to the adiabatic switching on of the interaction: and
the principal value should be employed in the integrals which contain
processes obeying the energy-momentum conservation law. After we get
the general point function of energy, we supplement the contribution which
come from the surface a, if necessary. The supplementary terms are ex-
pressed by means of the surface integrals over g, by performing the Fourier-

transform of E(x)s
For the proof of Eq. (I8) we should combine the following relations.

Bw= 350 1+ iy - ST ]=z~f’%)—l—mziv[a 196,
or
iﬁf"_lf—g‘ﬁ[? 15 (19)
0a (%) L ! ’
and |

) . () (m) (m) (m)
* In Schwinger's notation, | 77 (x/) da’= | G p(a’)day’, where Gu(x)=Z (x), and dap’

(il
0Xy
4
is the element at the point &/ of the surface ¢ over which the integration. is' performed.
c

(n) (o)
** In Yo, ], the jE(.r’) dx’s are exclusively used,
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Note on the Formal Solution of the Tomonaga-Sclmvinger Equation. 215

as s, (nm) ,
0,,[@- % E S 1, a9)

m=

which are revision of (12) by making use of (15); and

jL(»’)a’t-—ZmS (o, jb[a, 1= ZmS[a, S[a, 1, (149

m=1 m=1

which can be shown similarly as in Eq. (14) by changing the role of the
Hermitian conjugate operators. ~ With the aid of Eq. (10), they yield the

results
o 257a, ] 257 m ] @
N+ 05]a, A R
E@)=ni 20 () +mz=]m P Sla, ]
n—1 (n—m)
_ ) 0S[a, ]
+mz=l<” m)zS [a, ]W
—m) nol nom (—m=10)
—71E(x)+71 2 S‘[a, (:r) z E mF(:r) S*a, ].S[ﬂ', ]
m=1 m=1 l=1
n—1 n—m ®
+ Z Z(ﬂ—m) S*[n‘, ]S[a, JE(x)
m=11=1

n-1

i (x)— }]F(»)——fa(xf) dr' + Z | %’(’;’r') @ - E@).

6°) We add that the E(;r) of the preceding article is uniquely de-

termined disregarding an arbitrary constant factor, when we impose a

condition that they should be a point function and be a linear combination
o

[ -2
of the products jl(zl“)(x’) ax’ j%’w) z‘z’x”...[—](x)...j2‘)(,1"”) d [+ (i) + .-
+(A)=n—1] of the integrals of the point function energy lower than =
and H(x). We will not reproduce the proof in detail. But the essential
is as follows: when we perform the functional differentiation of this linear
combination with respect to the point 2’/ on the surface g, we have as
many condition that the sum of certain coefficients of combination should

G G
) Q) @)
vanish as there are types of terms such as jE (") da’ jE "y da . E(ah)
G

o)
...H(x)...jﬁ(x”’)(l,t"”[(i)+(ii)+...+(z)+...+(Z)=71—1]. In general, the
number of the conditions is gerater than the number of the unknown
coefficients.  However, if we eliminate those conditions which are not
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216 S. TanNI.

linearly independent and take the condition [A(x), H(2')]=0 into accout,
there is left just one less conditions than the number of the unknown
coefficients.

7°) For some purposes it is convenient to express the transformation
functional in form of an exponential function

o) @
S{e, ap]=exp—i(K[o, a;]+ K[a, 0]+ ......), (20)
(n)
where the K[o, 0,] is #~th order in ¢, and is expressed in terms of

(m),
jE (#) dx’s. The results for the first four order are as follows :

Co

) fm
;([a, uﬂ:jg(x’)dx’ 3

(2)

F @)
Rlo, a]=— [Eanar;

c
)

® 1 1rrm t@
Klo, )= [E)ar+55 jE(x') ax, jE(m’) a’x’];

ey

@ 1 ¢ fm @
o, al=— [ Ry av +T12"[ [EBayar, [Eaar].

The e"-approximation of the original equation in which the first term

(n)
of the transformed equation of motion is Z(x)/n, which is a point function,
i.e. in equation
. ™
{1 ¢ E(2)

{z do(x) + 7

+(terms of order higher than # in e)} ?[o]=0.
@)

is given by the following canonical transformation of the state functional
and the dynamical variables

#[s] —> 0[c] ; ¥[a]=Ufo, 190[4]

e, I=exp—i] _1‘1’?[«, 1+(£L 1-%—]5’%’(.«')@,)}
0(x) — U-'[a, 10() U, ]. 22)

8°) In concluding this note, we can add that the generalization of
the results presented here may be able to include the cases where the
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Note on the Fyomal Solution of the Tomonaga-Schwinger Equation. 217

interaction density is no more a point function but contains the normal or
other quantity related to the surface and consequently the integrability
condition is much more complicated than in Eq. (2). But these results
will be discussed in another occasion.

The author wishes to express his cordial thanks to Prof. Tomonaga
for the suggestion to this work.
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